Search results for "Stars: low-ma"

showing 9 items of 9 documents

Astrometric detection of a low-mass companion orbiting the star AB Doradus

1997

International audience; We report submilliarcsecond-precise astrometric measurements for the late-type star AB Doradus via a combination of VLBI (very long baseline interferometry) and HIPPARCOS data. Our astrometric analysis results in the precise determination of the kinematics of this star, which reveals an orbital motion readily explained as caused by gravitational interaction with a low-mass companion. From the portion of the reÑex orbit covered by our data and using a revised mass of the primary star (0.76 M _) derived from our new value of the parallax (66.3 mas \ n \ 67.2 mas), we Ðnd the dynamical mass of the newly discovered companion to be between 0.08 and 0.11 If accurate photom…

010504 meteorology & atmospheric sciencesGalactic astronomyStellar massBrown dwarfAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesstars: low-mass0103 physical sciencesVery-long-baseline interferometryAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsstars: individual (AB Doradus)[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAstrometryInterferometrySpace and Planetary Sciencetechniques: interferometricOrbital motionastrometryAstrophysics::Earth and Planetary Astrophysics[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]stars: kinematicsLow Massbrown dwarfs
researchProduct

UV variability and accretion dynamics in the young open cluster NGC 2264

2015

We explore UV and optical variability signatures for several hundred members of NGC 2264 (3 Myr). We performed simultaneous u- and r-band monitoring over two full weeks with CFHT/MegaCam. About 750 young stars are probed; 40% of them are accreting. Statistically distinct variability properties are observed for accreting and non-accreting cluster members. The accretors exhibit a significantly higher level of variability than the non-accretors, especially in the UV. The amount of u-band variability correlates statistically with UV excess in disk-bearing objects, which suggests that accretion and star-disk interaction are the main sources of variability. Cool magnetic spots, several hundred de…

AccretionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsSettore FIS/05 - Astronomia E AstrofisicaStars: low-maAstrophysics::Solar and Stellar Astrophysicsaccretion diskAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Stars: variables: T TauriPhysicsPhotosphereHerbig Ae/BeAstronomy and AstrophysicsAstronomy and AstrophysicUltraviolet: starAccretion (astrophysics)StarsWavelengthAmplitudeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceOpen clusters and associations: individual: NGC 2264Stars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsOpen cluster
researchProduct

NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

2018

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4[subscript ⊙] and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuS…

AccretionAstrophysics::High Energy Astrophysical Phenomenageneral [Pulsars]FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linelaw.inventionTelescopeX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarlow-mass [Stars]lawstars: low-mass0103 physical sciencesStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron Star Interior Composition Explorer010308 nuclear & particles physicsComputer Science::Information Retrievalaccretion disksneutron [Stars]Astronomy and AstrophysicsAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieStars: neutronNeutron starPulsars: generalAccretion diskSpace and Planetary ScienceAccretion disksbinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray pulsar
researchProduct

X-shooter spectroscopy of young stars with disks. The TW Hydrae association as a probe of the final stages of disk accretion

2019

We investigate ongoing accretion activity in young stars in the TW Hydrae association (TWA, ~8-10 Myr), an ideal target to probe the final stages of disk accretion down to brown dwarf masses. Our sample comprises eleven TWA members with infrared excess, amounting to 85% of the total TWA population with disks, with spectral types between M0 and M9, and masses between 0.58 and 0.02 Msol. We employed homogeneous spectroscopic data from 300 to 2500 nm, obtained with X-shooter, to derive individual extinction, stellar parameters, and accretion parameters simultaneously. We then examined Balmer lines and forbidden emission lines to probe the physics of the star-disk interaction environment. We de…

AccretionOpen clusters and associations: individual: TWA010504 meteorology & atmospheric sciencesBrown dwarfFOS: Physical sciencesTechniques: spectroscopicAstrophysicsProtoplanetary diskStellar classification01 natural sciencesspectroscopic [Techniques]symbols.namesakeSettore FIS/05 - Astronomia E Astrofisicalow-mass [Stars]pre-main sequence [Stars]0103 physical sciencesStars: low-maTW HydraeQB Astronomy010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesQBEarth and Planetary Astrophysics (astro-ph.EP)PhysicsInfrared excessBalmer seriesAstronomy and AstrophysicsDASAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)StarsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAccretion diskAstrophysics of Galaxies (astro-ph.GA)Accretion diskssymbolsStars: pre-main sequenceindividual: TWA [Open clusters and associations]Astrophysics - Earth and Planetary Astrophysics
researchProduct

Evolutionary paths of binaries with a neutron star - I. The case of SAX J1808.4 - 3658

2018

The evolutionary status of the low mass X-ray binary SAX J1808.4-3658 is simulated by following the binary evolution of its possible progenitor system through mass transfer, starting at a period of $\sim$6.6 hr. The evolution includes angular momentum losses via magnetic braking and gravitational radiation. It also takes into account the effects of illumination of the donor by both the X-ray emission and the spin down luminosity of the pulsar. The system goes through stages of mass transfer and stages during which it is detached, where only the rotationally powered pulsar irradiates the donor. We show that the pulsar irradiation is a necessary ingredient to reach SAX J1808.4-3658 orbital pe…

Angular momentumastro-ph.SRAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesLuminosityPulsars: individual: SAX J1808.4Settore FIS/05 - Astronomia E AstrofisicaPulsarBinaries: closeMass transfer0103 physical sciencesBinaries: generalStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)3658 -X-rays: binarieHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HE010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicOrbital periodNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

The Gaia-ESO Survey: Chromospheric emission, accretion properties, and rotation in gamma Velorum and Chamaeleon

2015

Aims: One of the goals of the Gaia-ESO Survey (GES), which is conducted with FLAMES at the VLT, is the census and the characterization of the low-mass members of very young clusters and associations. We conduct a comparative study of the main properties of the sources belonging to γ Velorum (γ Vel) and Chamaeleon I (Cha I) young associations, focusing on their rotation, chromospheric radiative losses, and accretion. Methods: We used the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of γ Vel and Cha I among the UVES and GIRAFFE spectroscopic obser…

Astrofísicastars: chromospheresAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRotationStars: chromosphereOpen clusters and associations: individual:γVelorumstars: low-massStars: low-maAstrophysics::Solar and Stellar AstrophysicsOpen clusters and associations: individual: Chamaeleon Iopen clusters and associations: individual: γ VelorumQCAstrophysics::Galaxy AstrophysicsQBLine (formation)PhysicsAccretion (meteorology)stars: chromospheres ; stars: low-mass; open clusters and associations: individual: γ VelorumDiagramStars: rotationSpectral densityAstronomy and AstrophysicsAstronomy and AstrophysicStarsDistribution (mathematics)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceChamaeleonStars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsOpen clusters and associations: individual: Chamaeleon I; Open clusters and associations: individual:γVelorum; Stars: chromospheres; Stars: low-mass; Stars: pre-main sequence; Stars: rotation
researchProduct

An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects

2011

We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic…

PhysicsYoung stellar objectBrown dwarfAstronomyAstronomy and AstrophysicsAstrophysicsAccretion (astrophysics)Spectral lineT Tauri starStarsaccretion accretion disks ISM: jets and outflows stars: formation stars: low-mass brown dwarfs stars: pre-main sequence T Tauri starsSpace and Planetary ScienceOutflowLow Massjets and outflows stars: formation stars: low-mass brown dwarfs stars: pre-main sequence T Tauri stars [accretion accretion disks ISM]
researchProduct

Mapping accretion and its variability in the young open cluster NGC 2264: A study based on u-band photometry

2014

We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). We performed a deep u,g,r,i mapping and a simultaneous u+r monitoring of the region with CFHT/MegaCam in order to directly probe the accretion process from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range 0.1-2 Mo. About 40% are classical (accreting) T Tauri stars, based on various diagnostics (H_alpha, UV and IR excesses). The remaining non-accreting members define the (photospheric+chromospheric) reference UV emission level over which flux excess is detecte…

Stellar massAstrophysics::High Energy Astrophysical PhenomenaStars: formationPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsPhotometry (optics)Accretion rateAccretion accretion diskStars: low-maAstrophysics::Solar and Stellar AstrophysicseducationAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Physicseducation.field_of_studyDetection thresholdAstronomy and AstrophysicsAstronomy and AstrophysicUltraviolet: starAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar Astrophysicsindividual: NGC 2264; Stars: formation; Stars: low-mass; Stars: pre-main sequence; Ultraviolet: stars; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Open clusters and associations]Space and Planetary ScienceOpen clusters and associations: individual: NGC 2264Stars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsOpen cluster
researchProduct

PLANETS AROUND LOW-MASS STARS AND STELLAR ACTIVITY EFFECTS

In the last years the field of exoplanet research has focused its interest in M dwarfs. These stars have became the favourite targets in radial velocity surveys, specially when looking for small planets in the habitable zones of their parent stars. Not only for being the M dwarfs the most common objects in our Galaxy also because the Doppler signals due to small planets orbiting around them are larger and more easily detectable than those around FGK stars. However, stellar magnetic activity and rotation affect the measured radial velocities as surface inhomogeneities rotating with the stellar surface can cause periodic changes in the spectral line centroid. Disentangle these stellar activit…

activity - Stars: low-mass - Techniques: radial velocities - planetary systems [Stars]Stars: activity - Stars: low-mass - Techniques: radial velocities - planetary systems
researchProduct